3.307 \(\int (a+a \cos (c+d x)) (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^4(c+d x) \, dx\)

Optimal. Leaf size=91 \[ \frac {a (2 A+3 (B+C)) \tan (c+d x)}{3 d}+\frac {a (A+B+2 C) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a (A+B) \tan (c+d x) \sec (c+d x)}{2 d}+\frac {a A \tan (c+d x) \sec ^2(c+d x)}{3 d} \]

[Out]

1/2*a*(A+B+2*C)*arctanh(sin(d*x+c))/d+1/3*a*(2*A+3*B+3*C)*tan(d*x+c)/d+1/2*a*(A+B)*sec(d*x+c)*tan(d*x+c)/d+1/3
*a*A*sec(d*x+c)^2*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {3031, 3021, 2748, 3767, 8, 3770} \[ \frac {a (2 A+3 (B+C)) \tan (c+d x)}{3 d}+\frac {a (A+B+2 C) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a (A+B) \tan (c+d x) \sec (c+d x)}{2 d}+\frac {a A \tan (c+d x) \sec ^2(c+d x)}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]

[Out]

(a*(A + B + 2*C)*ArcTanh[Sin[c + d*x]])/(2*d) + (a*(2*A + 3*(B + C))*Tan[c + d*x])/(3*d) + (a*(A + B)*Sec[c +
d*x]*Tan[c + d*x])/(2*d) + (a*A*Sec[c + d*x]^2*Tan[c + d*x])/(3*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3031

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((b*c - a*d)*(A*b^2 - a*b*B + a^2*C)*
Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b^2*f*(m + 1)*(a^2 - b^2)), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)),
 Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d + b
^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] - b*C*d*(m +
 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && Ne
Q[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx &=\frac {a A \sec ^2(c+d x) \tan (c+d x)}{3 d}-\frac {1}{3} \int \left (-3 a (A+B)-a (2 A+3 (B+C)) \cos (c+d x)-3 a C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx\\ &=\frac {a (A+B) \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a A \sec ^2(c+d x) \tan (c+d x)}{3 d}-\frac {1}{6} \int (-2 a (2 A+3 (B+C))-3 a (A+B+2 C) \cos (c+d x)) \sec ^2(c+d x) \, dx\\ &=\frac {a (A+B) \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a A \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{2} (a (A+B+2 C)) \int \sec (c+d x) \, dx+\frac {1}{3} (a (2 A+3 (B+C))) \int \sec ^2(c+d x) \, dx\\ &=\frac {a (A+B+2 C) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a (A+B) \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a A \sec ^2(c+d x) \tan (c+d x)}{3 d}-\frac {(a (2 A+3 (B+C))) \operatorname {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{3 d}\\ &=\frac {a (A+B+2 C) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a (2 A+3 (B+C)) \tan (c+d x)}{3 d}+\frac {a (A+B) \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a A \sec ^2(c+d x) \tan (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.38, size = 60, normalized size = 0.66 \[ \frac {a \left (3 (A+B+2 C) \tanh ^{-1}(\sin (c+d x))+\tan (c+d x) \left (3 (A+B) \sec (c+d x)+6 (A+B+C)+2 A \tan ^2(c+d x)\right )\right )}{6 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]

[Out]

(a*(3*(A + B + 2*C)*ArcTanh[Sin[c + d*x]] + Tan[c + d*x]*(6*(A + B + C) + 3*(A + B)*Sec[c + d*x] + 2*A*Tan[c +
 d*x]^2)))/(6*d)

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 114, normalized size = 1.25 \[ \frac {3 \, {\left (A + B + 2 \, C\right )} a \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (A + B + 2 \, C\right )} a \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, {\left (2 \, A + 3 \, B + 3 \, C\right )} a \cos \left (d x + c\right )^{2} + 3 \, {\left (A + B\right )} a \cos \left (d x + c\right ) + 2 \, A a\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="fricas")

[Out]

1/12*(3*(A + B + 2*C)*a*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*(A + B + 2*C)*a*cos(d*x + c)^3*log(-sin(d*x +
 c) + 1) + 2*(2*(2*A + 3*B + 3*C)*a*cos(d*x + c)^2 + 3*(A + B)*a*cos(d*x + c) + 2*A*a)*sin(d*x + c))/(d*cos(d*
x + c)^3)

________________________________________________________________________________________

giac [B]  time = 0.41, size = 205, normalized size = 2.25 \[ \frac {3 \, {\left (A a + B a + 2 \, C a\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (A a + B a + 2 \, C a\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (3 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 3 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 6 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 4 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 12 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 12 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 9 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 9 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 6 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="giac")

[Out]

1/6*(3*(A*a + B*a + 2*C*a)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(A*a + B*a + 2*C*a)*log(abs(tan(1/2*d*x + 1/
2*c) - 1)) - 2*(3*A*a*tan(1/2*d*x + 1/2*c)^5 + 3*B*a*tan(1/2*d*x + 1/2*c)^5 + 6*C*a*tan(1/2*d*x + 1/2*c)^5 - 4
*A*a*tan(1/2*d*x + 1/2*c)^3 - 12*B*a*tan(1/2*d*x + 1/2*c)^3 - 12*C*a*tan(1/2*d*x + 1/2*c)^3 + 9*A*a*tan(1/2*d*
x + 1/2*c) + 9*B*a*tan(1/2*d*x + 1/2*c) + 6*C*a*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d

________________________________________________________________________________________

maple [A]  time = 0.40, size = 160, normalized size = 1.76 \[ \frac {a A \sec \left (d x +c \right ) \tan \left (d x +c \right )}{2 d}+\frac {a A \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2 d}+\frac {a B \tan \left (d x +c \right )}{d}+\frac {a C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+\frac {2 a A \tan \left (d x +c \right )}{3 d}+\frac {a A \left (\sec ^{2}\left (d x +c \right )\right ) \tan \left (d x +c \right )}{3 d}+\frac {a B \sec \left (d x +c \right ) \tan \left (d x +c \right )}{2 d}+\frac {a B \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2 d}+\frac {a C \tan \left (d x +c \right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x)

[Out]

1/2*a*A*sec(d*x+c)*tan(d*x+c)/d+1/2/d*a*A*ln(sec(d*x+c)+tan(d*x+c))+1/d*a*B*tan(d*x+c)+1/d*a*C*ln(sec(d*x+c)+t
an(d*x+c))+2/3*a*A*tan(d*x+c)/d+1/3*a*A*sec(d*x+c)^2*tan(d*x+c)/d+1/2/d*a*B*sec(d*x+c)*tan(d*x+c)+1/2/d*a*B*ln
(sec(d*x+c)+tan(d*x+c))+1/d*a*C*tan(d*x+c)

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 162, normalized size = 1.78 \[ \frac {4 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} A a - 3 \, A a {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 3 \, B a {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, C a {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 12 \, B a \tan \left (d x + c\right ) + 12 \, C a \tan \left (d x + c\right )}{12 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="maxima")

[Out]

1/12*(4*(tan(d*x + c)^3 + 3*tan(d*x + c))*A*a - 3*A*a*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c)
+ 1) + log(sin(d*x + c) - 1)) - 3*B*a*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d
*x + c) - 1)) + 6*C*a*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 12*B*a*tan(d*x + c) + 12*C*a*tan(d*x +
 c))/d

________________________________________________________________________________________

mupad [B]  time = 4.01, size = 165, normalized size = 1.81 \[ \frac {a\,\mathrm {atanh}\left (\frac {2\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (A+B+2\,C\right )}{2\,A\,a+2\,B\,a+4\,C\,a}\right )\,\left (A+B+2\,C\right )}{d}-\frac {\left (A\,a+B\,a+2\,C\,a\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (-\frac {4\,A\,a}{3}-4\,B\,a-4\,C\,a\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (3\,A\,a+3\,B\,a+2\,C\,a\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + a*cos(c + d*x))*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^4,x)

[Out]

(a*atanh((2*a*tan(c/2 + (d*x)/2)*(A + B + 2*C))/(2*A*a + 2*B*a + 4*C*a))*(A + B + 2*C))/d - (tan(c/2 + (d*x)/2
)*(3*A*a + 3*B*a + 2*C*a) + tan(c/2 + (d*x)/2)^5*(A*a + B*a + 2*C*a) - tan(c/2 + (d*x)/2)^3*((4*A*a)/3 + 4*B*a
 + 4*C*a))/(d*(3*tan(c/2 + (d*x)/2)^2 - 3*tan(c/2 + (d*x)/2)^4 + tan(c/2 + (d*x)/2)^6 - 1))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**4,x)

[Out]

Timed out

________________________________________________________________________________________